Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Immunol ; 14: 1130821, 2023.
Article in English | MEDLINE | ID: covidwho-2299747

ABSTRACT

Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Receptor for Advanced Glycation End Products , Nucleocapsid , Antigens , Biomarkers , Antigens, Viral
2.
Inquiry ; 60: 469580231161435, 2023.
Article in English | MEDLINE | ID: covidwho-2287446

ABSTRACT

The COVID-19 pandemic contributed to an increase in mental health issues; Psychological changes occur in health professionals who are more susceptible to infection. The purpose of this study was to investigate health professionals' levels of anxiety, rage, and depression in COVID-related special circumstances. A general hospital in Korea experienced a widespread COVID-19 outbreak. There was a total of 149 involved frontline and non-frontline health professionals surveyed. The State-Trait Anger Expression Inventory, General Anxiety Disorder-7, and Korean Screening Tool for Depressive Disorders were utilized in the evaluation of their rage, anxiety, and depression. Anxiety and depression were found to be significantly higher among health professionals by occupation than among non-health professionals. Frontline workers were more depressed than non-frontline workers, according to type of work. These psychological changes can cause PTSD, so it is necessary to check and care for the mental health of health care workers working in medical institutions in the event of mass infections. These issues have been confirmed through studies related to the occurrence of mass infections such as SARS and MERS that the occurrence of mass infections can cause PTSD. The findings proved that the COVID-19 pandemic had a psychological impact on healthcare workers. During the COVID-19 pandemic, it is critical to raise awareness of post-traumatic stress disorder among healthcare professionals.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Cross-Sectional Studies , Receptor for Advanced Glycation End Products , SARS-CoV-2 , Pandemics , Depression/epidemiology , Depression/psychology , Health Personnel/psychology , Hospitals
3.
Metab Syndr Relat Disord ; 21(3): 141-147, 2023 04.
Article in English | MEDLINE | ID: covidwho-2246253

ABSTRACT

Background: There is a limited understanding of molecular and cellular events that derive disease progression in patients with corona virus disease 2019 (COVID-19). Receptor for advanced glycation end products (RAGE) is hyperactive in development and complications of several diseases by mediating oxidative stress and inflammation in the body. The present study aims to explore activation of RAGE signaling in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with preexisting comorbidities, including hypertension and or diabetes. Methods: A total of 442 subjects with COVID-19, were recruited for the study. The molecular mechanism of Covid-19 was explored in blood cells, using ELISA, RT- PCR and Western blot. Results: Enhanced levels of ligands of RAGE, including AGEs, S100, and high-mobility group box-1 (HMGB-1) were observed in COVID-19 patients with severe diseases; however, their level was significantly higher in COVID-19 patients with comorbidities compared to COVID-19 patients without comorbidities. The expression of RAGE in parallel to ligands accumulation was significantly increased in patients with severe disease and comorbidities compared to COVID-19 patients with severe disease without comorbidities. The expression of downstream effectors of RAGE, including STAT-3 and nuclear factor kappa B (NF-kB), was also enhanced and their activity was increased in COVID-19 patients with comorbidities. Levels of inflammatory and oxidative stress biomarkers were markedly increased in COVID-19 patients with comorbidities. Conclusions: We conclude that upregulated RAGE axis plays critical role, to worsen the severity of the SARS-CoV-2 infection in patients with preexisting comorbidities and partly explain inflammatory and oxidative stress storm in severe COVID-19 patients.


Subject(s)
COVID-19 , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Ligands , COVID-19/complications , SARS-CoV-2/metabolism , NF-kappa B/metabolism
4.
J Cardiothorac Vasc Anesth ; 37(3): 423-431, 2023 03.
Article in English | MEDLINE | ID: covidwho-2233921

ABSTRACT

OBJECTIVES: To determine in patients with acute respiratory distress syndrome (ARDS) on venovenous extracorporeal membrane oxygenation (VV ECMO) whether reducing driving pressure (ΔP) would decrease plasma biomarkers of inflammation and lung injury (interleukin-6 [IL-6], IL-8, and the soluble receptor for advanced glycation end-products sRAGE). DESIGN: A single-center prospective physiologic study. SETTING: At a single university medical center. PARTICIPANTS: Adult patients with severe COVID-19 ARDS on VV ECMO. INTERVENTIONS: Participants on VV ECMO had the following biomarkers measured: (1) pre-ECMO with low-tidal-volume ventilation (LTVV), (2) post-ECMO with LTVV, (3) during low-driving-pressure ventilation (LDPV), (4) after 2 hours of very low driving-pressure ventilation (V-LDPV, main intervention ΔP = 1 cmH2O), and (5) 2 hours after returning to LDPV. MAIN MEASUREMENTS AND RESULTS: Twenty-six participants were enrolled; 21 underwent V-LDPV. There was no significant change in IL-6, IL-8, and sRAGE from LDPV to V-LDPV and from V-LDPV to LDPV. Only participants (9 of 21) with nonspontaneous breaths had significant change (p < 0.001) in their tidal volumes (Vt) (mean ± SD), 1.9 ± 0.5, 0.1 ± 0.2, and 2.0 ± 0.7 mL/kg predicted body weight (PBW). Participants with spontaneous breathing, Vt were unchanged-4.5 ± 3.1, 4.7 ± 3.1, and 5.6 ± 2.9 mL/kg PBW (p = 0.481 and p = 0.065, respectively). There was no relationship found when accounting for Vt changes and biomarkers. CONCLUSIONS: Biomarkers did not significantly change with decreased ΔPs or Vt changes during the first 24 hours post-ECMO. Despite deep sedation, reductions in Vt during V-LDPV were not reliably achieved due to spontaneous breaths. Thus, patients on VV ECMO for ARDS may have higher Vt (ie, transpulmonary pressure) than desired despite low ΔPs or Vt.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , Humans , Respiration, Artificial , Prospective Studies , Interleukin-6 , Receptor for Advanced Glycation End Products , Interleukin-8 , COVID-19/complications , COVID-19/therapy , Respiratory Distress Syndrome/therapy , Biomarkers
5.
Respir Res ; 23(1): 303, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2108781

ABSTRACT

Blood levels of the soluble receptor for advanced glycation end-products (sRAGE) are acutely elevated during the host inflammatory response to infection and predict mortality in COVID-19. However, the prognostic performance of this biomarker in the context of treatments to reduce inflammation is unclear. In this study we investigated the association between sRAGE and mortality in dexamethasone-treated COVID-19 patients. We studied 89 SARS-CoV-2 positive subjects and 22 controls attending the emergency department of a University Teaching Hospital during the second wave of COVID-19 and measured sRAGE at admission. In positive individuals sRAGE increased with disease severity and correlated with the National Early Warning Score 2 (Pearson's r = 0.56, p < 0.001). Fourteen out of 72 patients treated with dexamethasone died during 28 days of follow-up. Survival rates were significantly lower in patients with high sRAGE (> 3532 pg/mL) than in those with low sRAGE (p = 0.01). Higher sRAGE levels were associated with an increased risk of death after adjustment for relevant covariates. In contrast, IL-6 did not predict mortality in these patients. These results demonstrate that sRAGE remains an independent predictor of mortality among COVID-19 patients treated with dexamethasone. Determination of sRAGE could be useful for the clinical management of this patient population.


Subject(s)
COVID-19 Drug Treatment , Humans , Receptor for Advanced Glycation End Products , SARS-CoV-2 , Biomarkers , Dexamethasone/therapeutic use , Glycation End Products, Advanced
7.
Comput Math Methods Med ; 2022: 4862742, 2022.
Article in English | MEDLINE | ID: covidwho-2020507

ABSTRACT

Infectious and contagious diseases exist in humanity for many centuries which causes a curb in the growth of the population. Immunization plays a vital role to prevent mortality and morbidity against infectious diseases. COVID-19 pandemic continues to rage the urgency of developing a vaccine that should ensure the safety, efficacy, swift and fair deployment, implementation, and monitoring of vaccines across the globe. In the present context, the vaccine production to immunization campaign is a critical challenge. Therefore, an effective vaccine supply chain mechanism is required to address issues such as counterfeit vaccines, reduce vaccine wastages, and vaccine record fraud. In this paper, a blockchain-enabled vaccine supply chain is proposed to ensure the correctness, transparency, trust, and immutable log and improve the efficiency of vaccine distribution in the cold chain. The uniqueness of the proposed system is to provide distributed system to verify the reliability and efficacy of the vaccine from production to end beneficiaries' feedback about the vaccine. Our proposed system gives a clear view to the users as well as to the healthcare provider about the vaccination and ensures the anticounterfeit vaccine. The proposed system minimizes counterfeit vaccines and records, provides transparent communication between stakeholders in the supply chain, and improves the security of the vaccine supply chain and immutable feedback system about the vaccine.


Subject(s)
Blockchain , COVID-19 , Vaccines , COVID-19/prevention & control , Humans , Pandemics/prevention & control , Receptor for Advanced Glycation End Products , Reproducibility of Results , Vaccine Efficacy
8.
Nutrients ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1974857

ABSTRACT

Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a "western" diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.


Subject(s)
Renal Insufficiency, Chronic , Uremia , Animals , Diet , Diet, Western , Glycation End Products, Advanced/metabolism , Kidney/metabolism , Receptor for Advanced Glycation End Products/metabolism , Renal Insufficiency, Chronic/metabolism , Uremia/complications
9.
Int J Mol Sci ; 21(15)2020 Jul 27.
Article in English | MEDLINE | ID: covidwho-1934096

ABSTRACT

In physiology and pathophysiology the molecules involved in blood cell-blood cell and blood cell-endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib-IX-V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4ß1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or ß-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.


Subject(s)
Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Erythrocytes/metabolism , Neoplasm Proteins/metabolism , Polycythemia Vera/metabolism , Retinal Vein Occlusion/metabolism , Cell Adhesion , Endothelial Cells/pathology , Erythrocytes/pathology , Glycation End Products, Advanced/metabolism , Humans , Polycythemia Vera/pathology , Receptor for Advanced Glycation End Products/metabolism , Retinal Vein Occlusion/pathology , Thrombosis/metabolism , Thrombosis/pathology
10.
J Diabetes Investig ; 13(7): 1111-1113, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1922966

ABSTRACT

Evolution of blood sugar, glycation, receptor for advanced glycation end-products and diabetic vasculopathy.


Subject(s)
Diabetes Mellitus , Diabetic Angiopathies , Blood Glucose , Glycation End Products, Advanced , Humans , Receptor for Advanced Glycation End Products , Receptors, Immunologic
11.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1884211

ABSTRACT

The receptor of advanced glycation end products (RAGE) is a receptor that is thought to be a key driver of inflammation in pregnancy, SARS-CoV-2, and also in the comorbidities that are known to aggravate these afflictions. In addition to this, vulnerable populations are particularly susceptible to the negative health outcomes when these afflictions are experienced in concert. RAGE binds a number of ligands produced by tissue damage and cellular stress, and its activation triggers the proinflammatory transcription factor Nuclear Factor Kappa B (NF-κB), with the subsequent generation of key proinflammatory cytokines. While this is important for fetal membrane weakening, RAGE is also activated at the end of pregnancy in the uterus, placenta, and cervix. The comorbidities of hypertension, cardiovascular disease, diabetes, and obesity are known to lead to poor pregnancy outcomes, and particularly in populations such as Native Hawaiians and Pacific Islanders. They have also been linked to RAGE activation when individuals are infected with SARS-CoV-2. Therefore, we propose that increasing our understanding of this receptor system will help us to understand how these various afflictions converge, how forms of RAGE could be used as a biomarker, and if its manipulation could be used to develop future therapeutic targets to help those at risk.


Subject(s)
COVID-19 , Glycation End Products, Advanced , Carrier Proteins , Female , Glycation End Products, Advanced/metabolism , Humans , NF-kappa B/metabolism , Pregnancy , Receptor for Advanced Glycation End Products/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2
12.
JCI Insight ; 7(9)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1868830

ABSTRACT

BackgroundThe value of the soluble receptor for advanced glycation end-products (sRAGE) as a biomarker in COVID-19 is not well understood. We tested the association between plasma sRAGE and illness severity, viral burden, and clinical outcomes in hospitalized patients with COVID-19 who were not mechanically ventilated.MethodsBaseline sRAGE was measured among participants enrolled in the ACTIV-3/TICO trial of bamlanivimab for hospitalized patients with COVID-19. Spearman's rank correlation was used to assess the relationship between sRAGE and other plasma biomarkers, including viral nucleocapsid antigen. Fine-Gray models adjusted for baseline supplemental oxygen requirement, antigen level, positive endogenous anti-nucleocapsid antibody response, sex, age, BMI, diabetes mellitus, renal impairment, corticosteroid treatment, and log2-transformed IL-6 level were used to assess the association between baseline sRAGE and time to sustained recovery. Cox regression adjusted for the same factors was used to assess the association between sRAGE and mortality.ResultsAmong 277 participants, baseline sRAGE was strongly correlated with viral plasma antigen concentration (ρ = 0.57). There was a weaker correlation between sRAGE and biomarkers of systemic inflammation, such as IL-6 (ρ = 0.36) and CRP (ρ = 0.20). Participants with plasma sRAGE in the highest quartile had a significantly lower rate of sustained recovery (adjusted recovery rate ratio, 0.64 [95% CI, 0.43-0.90]) and a higher unadjusted risk of death (HR, 4.70 [95% CI, 2.01-10.99]) compared with participants in the lower quartiles.ConclusionElevated plasma sRAGE in hospitalized, nonventilated patients with COVID-19 was an indicator of both clinical illness severity and plasma viral load. Plasma sRAGE in the highest quartile was associated with a lower likelihood of sustained recovery and higher unadjusted risk of death. These findings, which we believe to be novel, indicate that plasma sRAGE may be a promising biomarker for COVID-19 prognostication and clinical trial enrichment.Trial RegistrationClinicalTrials.gov NCT04501978.FundingNIH (5T32GM008440-24, 18X107CF6, HHSN261201500003I, R35HL140026, and OT2HL156812).


Subject(s)
COVID-19 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Biomarkers , Humans , Interleukin-6 , Prognosis , Receptor for Advanced Glycation End Products
13.
Cells ; 11(8)2022 04 12.
Article in English | MEDLINE | ID: covidwho-1785543

ABSTRACT

Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.


Subject(s)
COVID-19 , Diabetes Mellitus , Glycation End Products, Advanced/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2
15.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1649609

ABSTRACT

Cellular and molecular mechanisms driving morbidity following SARS-CoV-2 infection have not been well defined. The receptor for advanced glycation end products (RAGE) is a central mediator of tissue injury and contributes to SARS-CoV-2 disease pathogenesis. In this study, we temporally delineated key cell and molecular events leading to lung injury in mice following SARS-CoV-2 infection and assessed efficacy of therapeutically targeting RAGE to improve survival. Early following infection, SARS-CoV-2 replicated to high titers within the lungs and evaded triggering inflammation and cell death. However, a significant necrotic cell death event in CD45- populations, corresponding with peak viral loads, was observed on day 2 after infection. Metabolic reprogramming and inflammation were initiated following this cell death event and corresponded with increased lung interstitial pneumonia, perivascular inflammation, and endothelial hyperplasia together with decreased oxygen saturation. Therapeutic treatment with the RAGE antagonist FPS-ZM1 improved survival in infected mice and limited inflammation and associated perivascular pathology. Together, these results provide critical characterization of disease pathogenesis in the mouse model and implicate a role for RAGE signaling as a therapeutic target to improve outcomes following SARS-CoV-2 infection.


Subject(s)
Benzamides/pharmacology , COVID-19 Drug Treatment , COVID-19 , Lung , Receptor for Advanced Glycation End Products , SARS-CoV-2/physiology , Signal Transduction/drug effects , Virus Replication/drug effects , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Models, Animal , Lung/metabolism , Lung/virology , Mice , Mice, Transgenic , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
16.
Int Immunopharmacol ; 104: 108502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1641351

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. AIM: To evaluate the role of oxidative stress-related molecules in COVID-19. METHOD: An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. RESULTS: We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. CONCLUSION: SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.


Subject(s)
COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Child , Cyclooxygenase 2/blood , Cyclooxygenase 2/metabolism , Female , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/metabolism , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Healthy Volunteers , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Inflammation/virology , Male , Middle Aged , Oxidative Stress/immunology , Receptor for Advanced Glycation End Products/blood , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/immunology , Severity of Illness Index , Up-Regulation/immunology , Young Adult
18.
Horm Mol Biol Clin Investig ; 43(3): 353-355, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1573640

ABSTRACT

OBJECTIVES: To evaluate the potential relationship between COVID-19 pandemic and mucormycosis outbreak. METHODS: PubMed, Embase, Cochrane Library and Google Scholar were searched for the term "COVID-19 and mucormycosis" up to May 31, 2021. RESULTS: After the second wave of COVID-19, the mucormycosis outbreak complicates the natural course of COVID-19. COVID-19 patients with uncontrolled diabetes mellitus with diabetic ketoacidosis, excessive glucocorticoid use, prolonged neutropenia, malnutrition and any underlying immunocompromised conditions are at risk of developing mucormycosis. CONCLUSIONS: Hyperglycaemia impairs the motility of phagocytes and also decreases the oxidative and non-oxidative mechanism of killing the causative pathogen. Chronic hyperglycemia also leads to the formation of advanced glycation end-products (AGE), which leads to cross-linking between key proteins of inflammation and connective tissue such as collagen which makes tissue susceptible to immunological dysregulation. The receptor for AGE (RAGE) is expressed on various inflammatory cells including neutrophils and its activation by AGEs leads to activation of many down signaling pathways which ultimately leads to impairment of the inflammatory response. Hyperglycemia also increases serum Nitric Oxide (NO), which decreases neutrophil motility and reduces the synthesis and release of various inflammatory mediators such as TNF-α and IL-1ß, IL-6. It also decreases the expression of adhesion molecules such as LFA-1 and ICAM-2, on neutrophils. Steroids cause immunosuppression majorly by inhibiting the NF-κB pathway which is a transcription factor involved in the synthesis of many immunological mediators such as Interleukins, cytokines, chemokines, etc., and various adhesion molecules.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Mucormycosis , COVID-19/complications , Collagen , Cytokines/metabolism , Diabetes Mellitus/epidemiology , Glucocorticoids , Glycation End Products, Advanced/metabolism , Humans , Hyperglycemia/epidemiology , Inflammation Mediators , Interleukin-6 , Lymphocyte Function-Associated Antigen-1 , Mucormycosis/epidemiology , NF-kappa B/metabolism , Nitric Oxide , Pandemics , Receptor for Advanced Glycation End Products/metabolism , Tumor Necrosis Factor-alpha
19.
Aging (Albany NY) ; 13(21): 23913-23935, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1502964

ABSTRACT

LianHuaQingWen (LHQW) improves clinical symptoms and alleviates the severity of COVID-19, but the mechanism is unclear. This study aimed to investigate the potential molecular targets and mechanisms of LHQW in treating COVID-19 using a network pharmacology-based approach and molecular docking analysis. The main active ingredients, therapeutic targets of LHQW, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, STRING, and GeneCards databases. According to the "Drug-Ingredients-Targets-Disease" network, Interleukin 6 (IL6) was identified as the core target, and quercetin, luteolin, and wogonin as the active ingredients of LHQW associated with IL6. The response to lipopolysaccharide was the most significant biological process identified by gene ontology enrichment analysis, and AGE-RAGE signaling pathway activation was prominent based on the interaction between LHQW and COVID-19. Protein-protein docking analysis showed that IL6 receptor (IL6R)/IL6/IL6 receptor subunit beta (IL6ST) and Spike protein were mainly bound via conventional hydrogen bonds. Furthermore, protein-small molecule docking showed that all three active ingredients could bind stably in the binding model of IL6R/IL6 and IL6ST. Our findings suggest that LHQW may inhibit the lipopolysaccharide-mediated inflammatory response and regulate the AGE-RAGE signaling pathway through IL6. In addition, the N-terminal domain of the S protein of COVID-19 has a good binding activity to IL6ST, and quercetin and wogonin in LHQW may affect IL6ST-mediated IL6 signal transduction and a large number of signaling pathways downstream to other cytokines by directly affecting protein-protein interaction. These findings suggest the potential molecular mechanism by which LHQW inhibits COVID-19 through the regulation of IL6R/IL6/IL6ST.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Drugs, Chinese Herbal/pharmacology , Glycation End Products, Advanced/metabolism , Interleukin-6/metabolism , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19/immunology , Cytokine Receptor gp130/metabolism , Flavanones/pharmacology , Humans , Luteolin/pharmacology , Molecular Docking Simulation , Quercetin/pharmacology , Receptors, Interleukin-6/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166186, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1446450

ABSTRACT

The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in the pathogenesis of kidney diseases including primary and recurrent focal and segmental glomerulosclerosis (FSGS), diabetic nephropathy, and acute kidney injuries (AKI). Elevated serum suPAR concentration is a negative prognostic indicator in multiple critical clinical conditions. This study has examined the initial transduction steps used by suPAR in cultured mouse podocytes. We now report that the receptor for advanced glycation end-products (RAGE) co-immunoprecipitates with αV and ß3 integrin subunits, which have been previously shown to initiate suPAR signal transduction at the podocyte cell surface. siRNA knock-down of RAGE attenuated Src phosphorylation evoked by either suPAR or by glycated albumin (AGE-BSA), a prototypical RAGE agonist. suPAR effects on Src phosphorylation were also blocked by the structurally dissimilar RAGE antagonists FPS-ZM1 and azeliragon, as well as by cilengitide, an inhibitor of outside-in signaling through αV-integrins. FPS-ZM1 also blocked Src phosphorylation evoked by AGE-BSA. FPS-ZM1 blocked increases in cell surface TRPC6 abundance, cytosolic reactive oxygen species (ROS) and activation of the small GTPase Rac1 evoked by either suPAR or AGE-BSA. In addition, FPS-ZM1 inhibited Src phosphorylation evoked by serum collected from a patient with recurrent FSGS during a relapse. The magnitude of this inhibition was indistinguishable from the effect produced by a neutralizing antibody against suPAR. These data suggest that orally bioavailable small molecule RAGE antagonists could represent a useful therapeutic strategy for a wide range of clinical conditions associated with elevated serum suPAR, including primary FSGS and AKI.


Subject(s)
Integrin alphaVbeta3/metabolism , Podocytes/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction/physiology , Animals , Cell Line , Humans , Kidney Diseases/metabolism , Mice , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL